How to Calculate the Cross Product of Two Vectors
How to Calculate the Cross Product of Two Vectors
The cross product is a type of vector multiplication only defined in three and seven dimensions that outputs another vector. This operation, used in almost exclusively three dimensions, is useful for applications in physics and engineering. In this article, we will calculate the cross product of two three-dimensional vectors defined in Cartesian coordinates.
Steps

Calculating the Cross Product

Consider two general three-dimensional vectors defined in Cartesian coordinates. a = A i + B j + C k b = D i + E j + F k {\displaystyle {\begin{aligned}\mathbf {a} &=A\mathbf {i} +B\mathbf {j} +C\mathbf {k} \\\mathbf {b} &=D\mathbf {i} +E\mathbf {j} +F\mathbf {k} \end{aligned}}} {\begin{aligned}{\mathbf {a}}&=A{\mathbf {i}}+B{\mathbf {j}}+C{\mathbf {k}}\\{\mathbf {b}}&=D{\mathbf {i}}+E{\mathbf {j}}+F{\mathbf {k}}\end{aligned}} Here, i , j , k {\displaystyle \mathbf {i} ,\mathbf {j} ,\mathbf {k} } {\mathbf {i}},{\mathbf {j}},{\mathbf {k}} are unit vectors, and A , B , C , D , E , F {\displaystyle A,B,C,D,E,F} A,B,C,D,E,F are constants.

Set up the matrix. One of the easiest ways to compute a cross product is to set up the unit vectors with the two vectors in a matrix. a × b = | i j k A B C D E F | {\displaystyle \mathbf {a} \times \mathbf {b} ={\begin{vmatrix}\mathbf {i} &\mathbf {j} &\mathbf {k} \\A&B&C\\D&E&F\end{vmatrix}}} {\mathbf {a}}\times {\mathbf {b}}={\begin{vmatrix}{\mathbf {i}}&{\mathbf {j}}&{\mathbf {k}}\\A&B&C\\D&E&F\end{vmatrix}}

Calculate the determinant of the matrix. Below, we use cofactor expansion (expansion by minors). a × b = ( B F − E C ) i − ( A F − D C ) j + ( A E − D B ) k {\displaystyle \mathbf {a} \times \mathbf {b} =(BF-EC)\mathbf {i} -(AF-DC)\mathbf {j} +(AE-DB)\mathbf {k} } {\mathbf {a}}\times {\mathbf {b}}=(BF-EC){\mathbf {i}}-(AF-DC){\mathbf {j}}+(AE-DB){\mathbf {k}} This vector is orthogonal to both a {\displaystyle \mathbf {a} } {\mathbf {a}} and b . {\displaystyle \mathbf {b} .} {\mathbf {b}}.

Example

Consider the two vectors below. u = 2 i − j + 3 k v = 5 i + 7 j − 4 k {\displaystyle {\begin{aligned}\mathbf {u} &=2\mathbf {i} -\mathbf {j} +3\mathbf {k} \\\mathbf {v} &=5\mathbf {i} +7\mathbf {j} -4\mathbf {k} \end{aligned}}} {\begin{aligned}{\mathbf {u}}&=2{\mathbf {i}}-{\mathbf {j}}+3{\mathbf {k}}\\{\mathbf {v}}&=5{\mathbf {i}}+7{\mathbf {j}}-4{\mathbf {k}}\end{aligned}}

Set up the matrix. u × v = | i j k 2 − 1 3 5 7 − 4 | {\displaystyle \mathbf {u} \times \mathbf {v} ={\begin{vmatrix}\mathbf {i} &\mathbf {j} &\mathbf {k} \\2&-1&3\\5&7&-4\end{vmatrix}}} {\mathbf {u}}\times {\mathbf {v}}={\begin{vmatrix}{\mathbf {i}}&{\mathbf {j}}&{\mathbf {k}}\\2&-1&3\\5&7&-4\end{vmatrix}}

Calculate the determinant of the matrix. u × v = ( 4 − 21 ) i − ( − 8 − 15 ) j + ( 14 + 5 ) k = − 17 i + 23 j + 19 k {\displaystyle {\begin{aligned}\mathbf {u} \times \mathbf {v} &=(4-21)\mathbf {i} -(-8-15)\mathbf {j} +(14+5)\mathbf {k} \\&=-17\mathbf {i} +23\mathbf {j} +19\mathbf {k} \end{aligned}}} {\begin{aligned}{\mathbf {u}}\times {\mathbf {v}}&=(4-21){\mathbf {i}}-(-8-15){\mathbf {j}}+(14+5){\mathbf {k}}\\&=-17{\mathbf {i}}+23{\mathbf {j}}+19{\mathbf {k}}\end{aligned}}

What's your reaction?

Comments

https://filka.info/assets/images/user-avatar-s.jpg

0 comment

Write the first comment for this!